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Arbitrary spin field equations and anomalies in the 
Riemann-Cartan space-time 
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Department of Theoretical Physics, Moscow State University, 117234 Moscow, USSR 

Received 2 February 1983, in final form 25 May 1983 

Abstract. We obtain the new generalised wave equations for the fields of arbitrary spin 
in the Riemann-Cartan space-time. The arising consistency conditions are shown to be 
more restrictive than in the Riemannian space, eliminating the minimal coupling of torsion 
to the higher-spin fields. 

1. Introduction 

The Riemann-Cartan geometry arises on a space-time within the framework of the 
PoincarC gauge theory of gravity (Sciama (1962), Kibble (1961); for a review of earlier 
works see Hehl et af (1976), Ivanenko (1980); for the modern fibre bundle approach 
see Luehr and Rosenbaum (1980), Tseytlin (1982); the last reference contains a good 
bibliography of recent works). The gauge gravitational field is described by the tetrad 
(vierbein) fields h i  and the local Lorentz connection fabp = - Pbap (our conve;tions 
are summarised in the appendix). These define the world affine connection r&= 
h z h i f $ +  h;a,h;, which is compatible with the metric @,gap = 0) but possesses 
non-zero torsion C I A F v  = :(fiY- f'tp) = f'tpY]. Such a geometrical structure is called the 
Riemann-Cartan space-time U4. 

Recently several authors (Goldthorpe 1980, Kimura 1981a, b, Nieh and Yan 1982, 
Obukhov 1982, 1983) have achieved some progress in understanding the so-called 
spectral geometry of the Riemann-Cartan space-time, which relates zero modes of 
differential operators for the quantised fields with the geometrical and topological 
properties of the underlying manifold. The next step is to use these results and to 
generalise the index theorems (see Christensen and Duff 1979) to the case of non-zero 
torsion. This can shed new light on the possible role of non-trivial microscopic topology 
of space-time, e.g. of the gravitational instantons with torsion (Tseytlin 1982), in 
quantum physics. 

In this connection it is necessary to consider the theory of arbitrary spin fields in 
U,. Here we investigate the natural minimal coupling of matter to the gauge 
gravitational fields. We understand the minimal coupling principle in the geometrical 
sense (Benn er af 1980): dynamics of an arbitrary spin field, which can be considered 
as a (local) section of the corresponding (here, spinor) bundle, is determined by the 
bundle connection. In practice this means that the flat space theory should be rewritten 
in covariant form (in terms of covariant derivatives instead of the partial ones etc). 
One should not, however, confuse this rule with the case of the gauge fields, which 
are connections on the bundle and thus are not on an equal footing with the other 

@ 1983 The Institute of Physics 3795 



3796 Y u  N Obukhov 

matter fields. This latter case was already investigated earlier (Benn et a1 1980) and 
it was shown that in a curved non-Riemannian space-time the gauge fields do not 
couple directly to the SO(4) Lorentz connection Ft,. In the present paper we consider 
the general case of spinor fields with arbitrary mass and spin in the Riemann-Cartan 
background space-time. We derive the new generalised field equations and the 
consistency conditions, correcting several shortcomings of previous works of Kimura 
(1981a, b), Goldthorpe (1980) and Barth and Christensen (1983). 

2. Arbitrary spin equations 

The two-component spinor formalism is the most convenient mathematical framework 
for the description of the arbitrary spin fields. Many useful details about the spinors 
in flat and curved space-times can be found for instance in Christensen and Duff 
(1979), Barth and Christensen (1983) and references therein. So we just summarise 
our conventions. Since in perspective we are interested in the gravitational instanton 
effects, we consider the Euclidean sector for the metric, i.e. locally g,, = 
diag(+l, +1, +1, + l ) .  The flat space generalised Pauli matrices maAB, = (I, -ia) satisfy 
the canonical decomposition 

(+) (-) 

(TaCA'(TbCBt = SabEA'B '+  s 5bA.B', (1) 
ab 

( T ~ A C C ~ B C ' =  aabgAB + s AB, 

where 
(e) 

(;)ab A B = u  [ a  A C ' U  b l  B .  C' s abAcB' = g [ a C A ' g b l c B 7 ,  

A B -  0 1  Spinor indices are raised and lowered with the help of EAB = E  

4 A = E A B 4 ~ ,  4 ~ = 4  EBA.  

fundamental spin-tensors 

- ( - 1  o) ,  e.g. 

From the definition (1) one can see the symmetry and duality properties of the 

B 

(-1 (-1 
(;)ab A B =  ( + ) a b  s BA, s abAjB' = s abBtA', 

where E is the totally antisymmetric Levi-Civita tensor, .colz3 = + 1. Space-time 
dependent matrices are U ~ A B ,  = h r U a A B ' .  

As is well known (Umezawa 1956), in flat space particles with spin S are described 
by one of equivalent theories (there are S theories for bosons and S +; for fermions) 
for the spinors, which transform according to an irreducible (A, B) representation of 
the Lorentz group (A + B = S). 

At first, for definiteness, let us consider a particular case: the theory of fermions, 
S = k +$, k = 0, 1, . . , , determined by the Lagrangian 

A ;  . . .  A;B,B, . . . E  - Atl L = +  - A ; , A ; . . . A ' B  B .. B 

Here we denote aAB, = f f a A B d a ,  @ &  = (p ( a q )  - (acp)cp, and + is the complex conjugate 
spinor. 

We want to stress here that contrary to earlier attempts we start from the action 
principle. This is a crucial point since introduction of the gravitational interaction 

2 ((P ' I"' kaBoA6(P OBI  ... B k A i  ... A i  +i ' a B " A a B 1 .  .Bk.  A i  ... A i )  

-A"A; . . .A ;B  B ,  - A  ' . . .A;BoBl. . .Bk -m((P X B I  ... BkA6 ... A i  f X  (P  BOB^ ... B ~ A  i . .  .AL 1. (3) 
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(i.e. covariantisation of the theory) directly in the flat space field equations is to a 
great extent an ambiguous procedure (for a related discussion see Aragone and Deser 
(1980)), and in particular it can lead to non-self-adjoint operators. Indeed, this is the 
case for the field equations proposed by Goldthorpe (1980, equations (2.17) and 
appendix B), by Kimura (1981b, equations (2.13)-(2.15)) and quite recently by Barth 
and Christensen (1983, equations (6.1)-(6.44)). For example, when the scalar field 
equation -dw8"p = 0 is generalised in U4 according to their prescription, it reads 
-6,6w~ = 0 (Barth and Christensen 1983, equation (6.1)). But the operator -0 = 
-6,6. = -V,V" -2QA,,,V' is obviously not self-adjoint with respect to the usual 
scalar product (Q, 4 )  = 5 d4x(det gwu)1/2$$. The same is true for the higher spins. The 
non-trivial point, overlooked by the above authors, is that the Gauss theorem in U, 
reads j,d4x(det gwP)'"(6+ -2QAwA)Aw = j avdaw A w  (see Hehl et a1 1976). 

In our approach we have no risk of obtaining unphysical results, as starting from 
the action principle one automatically gets self-adjoint operators. 

Now we return to the theory under consideration and replace, according to the 
minimal coupling principle, the flat quantities in (3) by the Riemann-Cartan covariant 
ones: uaABf + = hEaaAB,; a, + 6,. The full Riemann-Cartan derivative is 6, = 
d, +U,  +Zg p&, where Zg are the generators of the general coordinate transformations 
and U,  = i&,rabw is the spinor connection with &, as SO(4) generators. The resulting 
action describes fermions on the U4 background and yields after variation by the 
spinors q( : (k  + l ) ,  i k )  and x ( i k ,  $(k + 1)) the following wave equations: 

i$AoBbQ A,A l...AkB; ... 6; - 

it*"Bbx A ,..AkBbB; ... B ,  = 

A ... A,B; ... B ;  

A,A ... A,B ; ... B ;  

- mX 3 

(4) 

where we denoted the operator  AB, = CT'AB'R,, V, = V, - Q,, Q, = QAFA. The trace 
of the torsionBppeared due to the use of the mentioned theorem in U4. 

mcp 
* I  - 

Applying V to (4) one gets the second-order equations 

( 5 )  

0, (6) 

dAOC,dDC'QDA ,... A,B; ... B '  

~ C B ~ d C D ~ X A l . . . A k D ' B ; . . . B ;  

2 A,A l . . . A k B ; , , . B ~  - 

2 

* + m  Q - 0, 

+ m  x A l . . .  AkB,pi ... BL = 

which show that the U4 gravitational coupling is in general inconsistent. Indeed, since 
the spinors Q and x are totally symmetric in both types of indices, contraction of ( 5 )  
with EA&, and of (6) with E B,+; gives additional constraints 

( + I  
s wYAoA,[d,dvl, 9 (7) A,AIA 2. . .AkB;. . .B, = 0 

These consistency conditions (like the analogous ones in the Riemannian case) 
provide some constraints on the background geometry and yield inequivalence of 
different higher-spin theories (which were equivale'nt in flat space). Supposing that 
(7)-(8) are satisfied, one can symmetrise the first terms in (5)-(6). 

Up to this point we have considered the particular theory for S = k +i, described 
in terms of ( i ( k  + l ) ,  i k )  and ( i k ,  i ( k  + 1)) representations. However, the extension 
to the general case is now obvious and straightforward: repeating the above procedure 
for an arbitrary (A, B )  representation, we finally obtain the following generalisation 
of the Riemannian result (Christensen and Duff 1979). 
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For the fermion field 4 (A, B ) ,  which transforms according to the irreducible 
(A,  B )  representation of S0(4), the new non-Riemannian self-adjoint second-order 
operator A acting on 4(A,  B )  is 

This is already a symmetrised operator, and since it is the square of the first-order 
fermion operator of the type (4), the generalised consistency conditions 

should be satisfied. 
Two comments are in order. First, using the Riemann-Cartan Ricci identity m e  

can see that equations (9) indeed have the supposed (Goldthorpe 1980, Kimura 
1981a, b) general structure A = -6,6' + S w 6 ,  +X, but the matrices Sw and X differ 
from the naive generalisation of the Riemannian ones. 

Second, when considering bosons ( A  + B = integer) we can follow along the same 
lines and obtain the U4 boson equations in the framework of the general first-order 
action principle approach. The corresponding second-order operators for the bosons 
then have the same form (9) as for the fermions, with the proper change of the range 
of indices. Evidently the consistency conditions (10) are the same for bosons and 
fermions. Note that in the case of the scalar (0,O) field we thus obtain the natural 
result: the torsion and the local Lorentz connection r:, do not couple to the spinless 
scalars. 

An alternative way is to continue our Fquations (4)-(10) to the A + B  = integer 
case with the help of the proper (V, +V, )  non-Riemannian modification of the 
Lichnerowicz (1 96 1) operator. This possibility requires a special consideration to 
which we shall return in a future publication. However, if in this approach we choose 
the higher-spin second-order boson operator in the form proposed by Christensen 
and Duff (1979, equation (3.13)), we again get the same (equation (10)) consistency 
conditions for the bosons. 

3. Consistency conditions 

Let us now proceed to the detailed analysis of the constraints ( lo) ,  which generalise 
the well known Riemannian results (cf Christensen and Duff 1979) to the case of 
non-zero torsion. Using the U4 Ricci identity 
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we can rewrite (10a)-(106) as follows; 

)] = o ,  D,4 A ,  A ,... A2,B ; . . .D ' . . .B ; ,  + 1 ( j ) a p B :  
ZB 

i = l  

)] = O .  + ?f ' S ' a p B '  A ,  ... A,,B;B; ... D' ... E ; ,  
'D '4 

i = 3  

For consistency of the theory the matter fields 4 and the gravitational field (g,,,, i%&) 
should satisfy (11). Requiring as usual that these equations should hold for any 
configuration (values) of the matter fields q5(A,B), we get the sufficient constraints 
on the geometrical (i.e. gravitational) quantities in V4 by putting the curvature and 
torsion dependent coefficients in (1 1) equal to zero. As compared with the Riemannian 
case we see, however, that the higher-spin constraints in V4 are differential and not 
algebraic ones. 

Now let us obtain the explicit restrictions imposed by (10)-(11) on torsion and 
curvature. Taking into account the duality properties (2), we get from the first term 
in (1 1) that the torsion is ( i )  unconstrained for A < 1, B < 1, (ii) self-dual (anti-self-dual) 
if A < 1, B 2 1 ( A  5 1, B < l), (iii) zero when A 3 1, B 3 1. So contrary to the state- 
ment of Kimura (1981b) the higher-spin consistency conditions in U4 are more 
restrictive than their Riemannian counterparts, in the sense that for the greater part 
of matter fields the torsion is completely ruled out. 

The other consequences of (10)-(11) are as follows. In view of the identity 

Q [ f i Q w ]  = i ( R ' r f i u l - v a Q u f i w  + 2QaQ:pw) 

(which can be proved directly from the definition of the Ricci tensor in U,) and 
assuming that the above torsion duality constraints are already satisfied, the second 
and third terms in (1 l a )  yield A ( A  - ~ E , , P ~ I ? ~ , ~ ] )  = 0. Respectively from 
(1 16) we have 

~ ( ~ - f ) ( R i f i v ] - ~ ~ f i v . .  1 "OR [ a @ ] ) = ~ .  

For the further analysis of (10)-(11) we use the irreducible decomposition of the 
Riemann-Cartan curvature tensor (Gambini and Herrera 1980) 

g a a w u  = c a p p  + t ( g a f i ~ ~ w - g a Z ~ ~  + g S Z a ,  - g S & ~ a u ) + ~ ( g ~ & g S Y - g ~ w g S , ) d  
is' 6') + apfiD + a(& apfi  AD A" - u p  W A D  AP - E AD is',q + E ~ ~ ~ A D " ' ~ ~  1. 

(12) 

Here & f i y  is the 'Weyl tensor' in U4 with the same symmetry properties (i.e. 
(2,O) + (0,2) irreducible part of the curvature); D,, = 4 ~ q l ? y ~ & ~ ~ , , ;  D = D,,gFW; 
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- 1 '  D(s',v = D(pv)  -&g,, ; 
Ricci tensor we have the identity 

= RClv -aRg,,,.  Note that for the antisymmetric part of the 

(13) 1 
R[pLy] = I E ~ v O l P D ~ a p l .  

Let us consider the typical term in the first sum in ( l l a ) ,  

- ! ( ~ ) , A Y ~ ~ ( ~ ) ~ P C ~ -  ABD ... am4 . 

With the help of (12) it reduces to 

provided we use the irreducibility of the spinor q5 (i.e. its total symmetry in both types 
of indices) and the well known duality properties (2) and the algebraic identity 

( + J a w A B ( + )  ( + ) W A  ( + ' q v B  s s auCD = 2 g w " 8 A ( c 8 B D ) -  s ( C 8 B D ) -  s (c8Ao) 

(the latter is a direct consequence of (1)). 

as follows: 

-a  AB a m 4  --dEpp- 9 

where E:,! = 

For the same reasons the typical term in the last sum in ( l l a )  can be transformed 

~ ( j l c r v  (s)aBCcD,R AB ... D' .... - 1 '(S) D ( S )  ) ( ? a p A B ( z a u C ' D , 4  AB ... D' ... 

Analogously for (1 1 b )  we get 

- A'B'D' ... - - -a  1 ' - '  s ~ Y A . * . r S i ~ ~ c l D , ~ a B , A " ~ . -  A'B'D' ... s r'VA,B,(S)aPC' D ~ R  - 4"' 

and 

- + ( s ) p ~ ~ , ~ , ( J ) a 6 C d  q5D ... A'B' ... = -$(E:; + ~ F ; ) ( z a f i ~ , ~ ,  (+) s C d D  ... A'"'.. . 
ap&v 

Thus taking all intermediate results together, we finally arrive at the following 
sufficient consistency conditions in  V4: 

(A - 1)6+ (B - 1)6- 

r $ ( A , B ) = O = B ( B  -3) (14) 

Here the condensed notation for the self-dual (+) and anti-self-dual (-) parts of 
antisymmetric tensors is used: C?,AF,, =&0Afi,, * ~ E ~ , U ! P O * ~ , , ) ,  D-tr'y = t (D[pv l*  
: E ~ ~ U P D [ ~ ~ ] ) ,  c,,!,, = ;(C?!r'y * $ E , , U P ~ ? ~ ~ ) .  In view of (13) we have rewritten the 
initially obtained restrictions of the antisymmetric part of the Ricci tensor as the 
constraint on DLCrv]. 

Hence the classification of the possible gravitational instantons (cf Christensen and 
Duff 1979) is more specialised in U,. 
(I) General case : all irreducible parts of torsion and curvature are non-trivial (admiss- 
ible for (O ,O) ,  (4, O) ,  ( 0 , h  (4, $1). 
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(IIa) Self-dual torsion and self-dual Ricci tensor: Q- = 0, d -  = 0. There we have the 
‘fine structure’: 

(IIa.1) 

(11a.2) 

(IIa.3) 

(IIa.4) 

e+ # 0, e- z 0,E‘’) # 0, D”’ z o 
6, # o ,& = 0 , E ” )  z 0, D”’ z 0 

6, # 0, e- # 0, Z?s’+D‘s’ = 0 

e+ = 0, e- = 0, ,??s)+D‘s’ = 0 

(only (0, I)) ,  

(for (0, B ) ,  B > 11, 

(for (i, I)), 

(for ($, B ) ,  B > I). 

(IIb) Anti-self-dual torsion and anti-self-dual Ricci tensor: Q, = 0, d ,  = 0. This case 
has analogous subclasses: 

(IIb.1) 

(IIb.2) 

e+ # 0, e- # 0, E”) # 0, D”’ f 0 (for (1, O)), 

(for (A,  O), A > I) ,  

(IIb.3) e+ # 0, e- # 0, E:cs’-D‘s’=O (for (1,111, 

e+ = 0, e- # 0, E‘’) # 0, D”’ f 0 

(IIb.4) e+ = 0, e- = 0, l?(s’-D‘s’= 0 (for (A,  $), A > 1). 

(111) Torsion-free spaces Q?,,, = 0 (and hence D,,, = 0). All these are Einstein spaces 
E,,, = 0 with various Weyl duality: 

(111.1) c+ # 0, c- # 0 (for (1, 111, 

(III.2a) 

(III.2b) 

(111.3) 

Thus in order to generalise the index theorems one should first of all revise the 
Riemannian results for the non-trivial general case (I), while the other non-zero torsion 
cases are strongly restricted by self-duality conditions and demand a separate study. 
At the same time for ( A  = 0, B = 0) and ( A  2 1, B 3 1) we are left with the well known 
Riemannian results. 

C ,  # 0, C- = 0 

C+ = 0, C- # 0 

C+ = 0, C- = 0 

(for (1, B ) ,  B > 11, 

(for (A,  I) ,  A > I ) ,  
(for (A,  B ) ,  A > 1, B > 1). 

4. Spin-f example 

Axial and conformal anomalies for the quantised Dirac fields in U4 have already been 
obtained by Obukhov (1982, 1983). However, this was done in the four-spinor 
formalism. In our opinion it would also be useful to rederive our results within the 
framework of the above described arbitrary spin formalism in U4, as this important 
example can help to clarify the general structure of the higher-spin self-adjoint 
second-order operators in U4. 

The field equations for the irreducible spinors cp(& 0) and ~ ( 0 , ; )  according to (4) 
are 

itA:’cp A = mXB’, i$AB8xB’ = mcp A . 
Consequently the second-order equations (5)-(6) read now 

(-6,6, + m 2 + a ( &  +D)+6,QF -Q,Q’)(pA +(QU,,(?’”AB +2Q“SAB)6,cpB 

+i(d,,, -6,Q, +b,,Qw)(?’”’A~cpB = 0, 



The last terms in S @  and X are absent in operators proposed by Goldthorpe (1980), 
Kimura (1981a, b), Barth and Christensen (1983), but it is these terms which provide 
the self-adjointness of the operators under consideration. 

We would like to end this section by giving the explicit expression for the (Minak- 
shisundaram-Seeley-De Witt) b4 coefficients for the Dirac ( $ , O )  and (0, i) fields in 
U4, because these important quantities have never been given elsewhere. These 
coefficients (for details see e.g. Christensen and Duff 1979) determine the one-loop 
gravitational counterterms, the stress tensor trace anomaly and the axial current 
anomaly. Earlier (Obukhov 1983) we have obtained the general formula for b4(A, B )  
for the arbitrary spin field in U,. With its help (equation (3.9) of Obukhov 1983) we 
get for the operator (15) 

and Q, = E,,,~,,Q"*~ is the axial trace of torsion. 
The choice of the upper signs in (16) gives b4(+, 0) and of the lower ones 64(0,$). 

As one can easily see, (16) agrees with the previously obtained anomalies of the 
massless Dirac fields derived in the four-spinor formalism. 

5. Discussion and conclusion 

Starting from the flat space action principle and the minimal coupling assumption, we 
have obtained the generalised (self-adjoint) field equations for an arbitrary spin in 
the Riemann-Cartan space-time. It turns out that the consistency restrictions imposed 
on the curvature and torsion are stronger than in the Riemannian case and the 
background torsion is almost ruled out. 

After the completion of our calculations we became aware of the recent paper of 
Barth and Christensen (1983) in which they also attempted the construction of the 
general theory of arbitrary spin fields in U4. Our results are different in several 
aspects. The crucial point of our method is the use of the action principle. Thus our 
equations are new. Moreover they are self-adjoint whereas the earlier proposed 
operators are not. This fact is very important because the correct form of the field 
operators and their self-adjointness play the central role in the calculation of quantum 
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corrections for the quantised fields in curved space-times. Naturally the consistency 
conditions (14) also differ from that of Barth and Christensen (1983), though of course 
the general structure of the possible constraints is the same (note also that a different 
technique is used for their analysis). 

In our opinicn one can try to overcome the consistency problems in V4 by assuming 
some kind of non-minimal coupling, analogous to the Riemannian examples (see 
attempts of Buchdahl (1958, 1962, 1982) in this direction). Another possible way out 
is to use supersymmetry. In fact the simple supergravity (see van Nieuwenhuizen 
1981) can be considered as an example of consistent theory of the spin-$ field in U4. 

Appendix 

Our conventions are as in (Obukhov 1983). Greek indices a, p,  p, v, . , . = 0, 1 , 2 , 3  
refer to the space-time coordinate basis {d,}; Latin indices a,  6, c, . . . = 0 ,  1, 2, 3 refer 
to an arbitrary non-holonomic orthonormal basis in the tangent space; A, B, . . . = 1 , 2  
are the two-spinor indices, while A' ,  B', . . . refer to the complex conjugate two-spinors. 

The space-time metric is 6," = hzhb$,b; the world affine connection rg, defines 
the parallel transport S A "  = - r&A98X@ and can be decomposed into the Riemannian 
connection (Christoffel symbols) r;, = ~ g " " ( d p g W y  +d,gp, -d.g,,) and contorsion as 
follows: 

F;,, = r;,+ C p ,  + Qp,: + QFp:. 

By the tilde we denote geometrical objects, constructed from the Riemann-Cartan 
connection FE,, while the Riemannian quantities have no additional marks. 

The Riemann-Cartan curvature is 

- -  
its contractions are the Ricci tensor Z?," = and the curvature scalar R = R,,gw". 
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